
Comparison of methods for supervisory control and submodule construction 1Gregor v. Bochmann, University of Ottawa

Comparison of methods
for supervisory control and
submodule construction

Gregor v. Bochmann and Bassel Daou

School of Information Technology and Engineering (SITE)
University of Ottawa

ACSD conference, Hamilton, June 2004

Comparison of methods for supervisory control and submodule construction 2Gregor v. Bochmann, University of Ottawa

Abstract

Over the last 25 years, methods for supervisory control of discrete event systems and
methods for submodule construction based on state machine specifications have
been developed quite independently by different research communities. The purpose
of this paper is to give a summary of the results in these two areas and to point out
the many similarities and certain differences between the approaches taken by these
two communities. The basic problem, in both cases, is to find the behavior of a
single submodule X such that combined with a given submodule C, this
composition exhibits a behavior that conforms to a given specification S. In the case
of supervisory control, the submodule C is an existing system that is to be controlled
by the controller X in such a manner that a behavior compatible with S is obtained.
We discuss the main issues that must be addressed for solving this problem, review
certain conditions for the existence of a solution, and present the major solution
algorithms. We also discuss the different treatment of allowed and required
behavior, and the difficulties that arise in the context of different communication
paradigms (for instance, distinguishing controllability, observability, input/output,
synchronous and asynchronous communication) and different specification
formalisms.

Comparison of methods for supervisory control and submodule construction 3Gregor v. Bochmann, University of Ottawa

Equation solving: Integer division

 Multiplication: R1 * R2 = ?
 Equation solving: R1 * X = R3

 What is the value of X ?
 Solution: definition of the division operation

 Written “ X = R3 / R1 ”
 What does it mean ?

 X = biggest Y such that R1 * X ≤ R3

 Note: in many cases, there is no exact solution, that
is, there is no X such that R1 * X = R3
 For instance: 7 / 3 = 2, and 3 * 2 = 6 ≤ 7

Comparison of methods for supervisory control and submodule construction 4Gregor v. Bochmann, University of Ottawa

Submodule construction

Multiplication Machine composition
Division Submodule construction (“equation

solving”)

Example:

M1 ?
S A2A1

A12M1

? A2A1
A12 M2

Multiplication
Division

Comparison of methods for supervisory control and submodule construction 5Gregor v. Bochmann, University of Ottawa

Equation solving for machines

Given machine M1 and specification S for the behavior of
the composition of M1 with X, find a behavior of machine
X such that

hide A12 in (M1 ∞ X) ≤ S
Meaning of ≤ : set inclusion of possible execution

sequences (“traces”, i.e. sequences of interactions), also
called trace inclusion

M1 X

S A2A1
A12

Comparison of methods for supervisory control and submodule construction 6Gregor v. Bochmann, University of Ottawa

Controller design

Applications in process control, robotics, etc.
 In the context of so-called “Discrete event

systems” [Ramage-Wonham, 1989]
 Distinction between non-controllable and

controllable interactions (like input/output)

Plant
(to be controlled)

Controller

Desired properties
A

Comparison of methods for supervisory control and submodule construction 7Gregor v. Bochmann, University of Ottawa

Overview

 Introduction
 Application areas
 Overview of differences between CD and SC
 SC solution formulas for LTS trace semantics
 Other differences: progress requirements etc.
 IO Automata and partial specifications
 Other conformance relations and issues
 Conclusions

Comparison of methods for supervisory control and submodule construction 8Gregor v. Bochmann, University of Ottawa

Application Areas
 Controller design for discrete event

systems
 Communication protocols

 Protocol design (Merlin-Bochmann, 1980)
 Design of communication gateways

 Component reuse, e.g. in software
engineering

 Embedded testing

Comparison of methods for supervisory control and submodule construction 9Gregor v. Bochmann, University of Ottawa

Communication protocol design

 Protocol entities PE1 and PE2 use the underlying
service Slow and provide the service S to the
users of the protocol
 PE1 and Slow are given
 PE2 = X is to be found
 M1 corresponds to (PE1 ∞ Slow)

PE1

S

Slow

PE2 M1 X

S

Comparison of methods for supervisory control and submodule construction 10Gregor v. Bochmann, University of Ottawa

Communication gateways

 Given
 desired end-to-end communication service E2E
 Protocols in the two networks (different)

 To be found: gateway behavior (shown by red box)

PE1

S

Slow

PE2 PE’1

S’

S’low

PE’2

adapter
E2E

Comparison of methods for supervisory control and submodule construction 11Gregor v. Bochmann, University of Ottawa

Component reuse

 A given submodule does not completely
correspond to the specification of the system to
be built

 An additional submodule to be built (and
designed throught equation solving) makes up
the “difference”

Submodule
to be re-used

New subm.
to be built

Module to be built

A2A1

A12

Comparison of methods for supervisory control and submodule construction 12Gregor v. Bochmann, University of Ottawa

Embedded testing

 If internal interactions (i.e. A12) are not visible, only the
properties of the composed system can be observed

 The most general behavior of the SUT that leads to
conforming behavior for the composed system, is the
solution of submodule construction.
 This behavior is often more general than the specification for the SUT;

the difference can not be observed.

Component
assumed
correct

Component
under test

Properties of composed system
A2A1

A12

Comparison of methods for supervisory control and submodule construction 13Gregor v. Bochmann, University of Ottawa

Overview

 Introduction
 Application areas
 Overview of differences between CD and SC
 SC solution formulas for LTS trace semantics
 Other differences: progress requirements etc.
 IO Automata and partial specifications
 Other conformance relations and issues
 Conclusions

Comparison of methods for supervisory control and submodule construction 14Gregor v. Bochmann, University of Ottawa

Overview of differences

[M-B-1980] : SC for trace semantics
 rendezvous interactions
 partial observability by controller
 internal interactions (not visible at service level)
 construction algorithm for regular languages

[R-W-1989] + follow-on papers: CD for trace semantics
Like above, except the following

 no internal interactions
 distinction of controllability of interactions
 pruning algorithm to avoid deadlocks

Comparison of methods for supervisory control and submodule construction 15Gregor v. Bochmann, University of Ottawa

Architectural overview

Plant
(to be controlled)

Controller

Desired properties
uo
uc

uo
c

o
uc

o
c

controllable, but not observable
uncontrollable (like input to controller)
controllable (like rendezvous, however,

often treated like output from controller)

Plant
(to be controlled)

Controller

Desired properties

Controller
design

Submodule
construction

internal interactions

Comparison of methods for supervisory control and submodule construction 16Gregor v. Bochmann, University of Ottawa

Modeling controller interactions
Questions: Can the different types of controller

interactions be modelled with rendezvous
interactions ?
 unobservable – uncontrollable

 controller is not involved
 observable – controllable

 normal rendezvous interaction (if the controller state has no
corresponding transition, the interaction is not possible)

 observable – uncontrollable
 “input” to controller: each state of the controller must have a

corresponding transition
 unobservable – controllable

 If a state of the controller has a corresponding transition, it
must be a self-loop (controller goes back to the same state,
no visibility)

Comparison of methods for supervisory control and submodule construction 17Gregor v. Bochmann, University of Ottawa

Overview

 Introduction
 Application areas
 Overview of differences between CD and SC
 SC solution formulas for LTS trace semantics
 Other differences: progress requirements etc.
 IO Automata and partial specifications
 Other conformance relations and issues
 Conclusions

Comparison of methods for supervisory control and submodule construction 18Gregor v. Bochmann, University of Ottawa

The SC problem and its solution

Problem: Find largest set X (of execution sequences) over

the alphabet (A2U A12) such that

hide A12 in (M1 ∞ X) ≤ S
Solution: X = (A2U A12)* \ (minus)
any sequence that could lead to an observable execution sequence not in S , i.e.

hide A1 in (M1 ∞ ((A1U A2)* \ S))

M1 X

S
A2A1

A12

M1 X

S A2A1
A12

Comparison of methods for supervisory control and submodule construction 19Gregor v. Bochmann, University of Ottawa

A comment about the largest solution
 Since all execution sequences of X must go in interaction

with M1 and S, we may replace (A2U A12)* (the chaos

for X) by hide A1 in (M1 ∞ S)
• The obtained “reduced” solution is as good as the largest one,

since the sequences in the difference between the two will block in
the interaction with M1

Comparison of methods for supervisory control and submodule construction 20Gregor v. Bochmann, University of Ottawa

An example: one-place queue

Note: * means any other interaction

c
a

Specification

Context X

new use ackrack

Specification

A

B C

D

 new

 use

 ack

 rack

E

*

*

Context

1

2 3

4

 new

 c

a

 rack

a

*

*

Architecture

Comparison of methods for supervisory control and submodule construction 21Gregor v. Bochmann, University of Ottawa

. . . Product: Spec ∞ Context

 shaded states are non-accepting
 not visible by X (controller)

A1

B4B3B2

C4C3C2

D4D3D2

E4E3E2

a

a

a

c aE1

rack

use

useuseuse

use use

new

ack ackack

ack

rack

B1

C1

D1

use

use
ack

ack use

a

a

a

c

c

c

use
ack

use
ack

use
ack

ack rackackack

use
ack

new

new

new

Comparison of methods for supervisory control and submodule construction 22Gregor v. Bochmann, University of Ottawa

. . . after determination

transitions to be eliminated

B4,
E1B3

A1,
B2

C4,
E1C3

E1,
C2

D4,
A1, B2D3D2

E4E3E2

a

E1

use use

ack

B1,
E2

C1,
E2

D1,
E2

use

ack

a

a

a

c a

a

c

c

Comparison of methods for supervisory control and submodule construction 23Gregor v. Bochmann, University of Ottawa

Other specification domains
Problem: hide A12 in (M1 ∞ X) ≤ S
Sol: X = (A2U A12)* \ hide A1 in (M1 ∞ ((A1U A2)*\ S))
 Observation: Structurally equivalent solution formula hold

for different specification domains, as follows:
 Synchronous automata [Yevtushenko]

 Relational databases
 “hide A12 “ “proj{a1, a2 }”
 “∞ “ join (between relations)

 Predicate logic: Variables A1, A2, and A12 represent interaction sequences
 Problem: M1(A1, A12) and X(A2, A12) implies S(A1, A2)

 Solution: X(A2, A12) = not exists A1’ : (M1(A1 ’, A12) and not S(A1 ’, A2))

M1 X

S A2A1
A12

Comparison of methods for supervisory control and submodule construction 24Gregor v. Bochmann, University of Ottawa

Algorithms for equation solving
Sol: X = (A2U A12)* \ hide A1 in (M1 ∞ ((A1U A2)*\ S))

 Algorithms for operations ∞ , \ , hide
 In general not decidable (infinite sets of arbitrary

sequences)

 For finite state models (regular languages) :

 Polynomial complexity for ∞ , hide
 hide introduces non-determinism (in case of non-

observable interactions)

 \ requires conversion to deterministic models,
which has exponential complexity

Comparison of methods for supervisory control and submodule construction 25Gregor v. Bochmann, University of Ottawa

Overview

 Introduction
 Application areas
 Overview of differences between CD and SC
 SC solution formulas for LTS trace semantics
 Other differences: progress requirements etc.
 IO Automata and partial specifications
 Other conformance relations and issues
 Conclusions

Comparison of methods for supervisory control and submodule construction 26Gregor v. Bochmann, University of Ottawa

Minimum service requirements
 Above problem definition – Safeness: S = “allowed behavior”

 Any possible interaction sequence is included in S
 Need for some form of liveness definition

 minimum set of sequences that must be realized (sometimes
called “required behavior” in CD)
 The above algorithms find the largest solution which may be less

than S. Check that this behavior includes the minimum required.
 Required and optional transitions [Larson, Drissi]
 Progress [Kumar, El-Fakih]

 For any reachable state of the system and the corresponding
externally visible trace t, if the specification of S admits i as next
interaction after t, then the system must be able to produce the
interaction i, possibly after a certain number of internal interactions.

 This means required behavior (which is deterministic) must be
realized exactly (without any possible blocking)

Comparison of methods for supervisory control and submodule construction 27Gregor v. Bochmann, University of Ottawa

Language properties for CD
Properties for sublanguages of the Plant

language (for given subsets of controllable
and observable interactions) :
 Controllability (e.g. maximal controllable sublanguage)

 Normality and Observability
 normality implies observability
 observability implies normality if controllable

events are also observable

Comparison of methods for supervisory control and submodule construction 28Gregor v. Bochmann, University of Ottawa

Overview

 Introduction
 Application areas
 Overview of differences between CD and SC
 SC solution formulas for LTS trace semantics
 Other differences: progress requirements etc.
 IO Automata and partial specifications
 Other conformance relations and issues
 Conclusions

Comparison of methods for supervisory control and submodule construction 29Gregor v. Bochmann, University of Ottawa

Systems with input and output

Nature of input/output (non-rendezvous)
 Output: time and parameters of an interaction are

determined by the system component producing the
output

 Input: The component receiving the interaction
cannot influence the time nor parameter values

Specification of component behavior
 Output: The specification gives guarantees about

timing and parameter values
 Input: The specification may make assumptions about

timing of inputs and the received parameter values

Comparison of methods for supervisory control and submodule construction 30Gregor v. Bochmann, University of Ottawa

Specification paradigms
with hypothesis and guarantees

 Software
 Pre- and postconditions of a procedure call

 They define hypotheses on input parameters, and
guarantees on output parameters, respectively

 Finite state machines (state-deterministic)
 Unspecified input: hypothesis about the

behavior of the environment: this input will
not occur when the machine is in this state

Comparison of methods for supervisory control and submodule construction 31Gregor v. Bochmann, University of Ottawa

Conformance to specifications
based on IO sequences

 Given a specification S and a sequence T
 Either T S (we say T conforms to S) or …
 T has wrong input: all prefixes of T up some time t conform to S,

but there is wrong input at time (t+1)
 T has wrong output: similarly
 T has wrong input and output at the same time instant

 A component conforms to a specification S iff no
sequence T in which the component participates
has wrong output in respect to S
 Note: if a sequence has wrong input, nothing can be

assumed about wrong output at a later time

Comparison of methods for supervisory control and submodule construction 32Gregor v. Bochmann, University of Ottawa

Equation solving for specifications
based on IO sequences

 Find most general specification X such that
any sequence T of the composition of M1 and
X has the following properties:
 proj{A1, A2} (T) conforms to S
 If proj{a1, a2} (T) has no wrong input in respect to S

then proj{a1, a12} (T) has no wrong input in resp. to M1

Solution: see [Drissi] and [Bochmann]

M1 X

S A2A1
A12

Comparison of methods for supervisory control and submodule construction 33Gregor v. Bochmann, University of Ottawa

Overview

 Introduction
 Application areas
 Overview of differences between CD and SC
 SC solution formulas for LTS trace semantics
 Other differences: progress requirements etc.
 IO Automata and partial specifications
 Other conformance relations and issues
 Conclusions

Comparison of methods for supervisory control and submodule construction 34Gregor v. Bochmann, University of Ottawa

Different conformance relations

 What are the requirements for the behavior
of the controlled system ? (in case of CD: behavior of the
composition of the Context and the new component X)

 Answer (in many cases): conformance to a specification S
 Conformance relations:

 Equal traces (and no internal blocking) [controllability property of S
indicates whether this is possible]

 Equal traces with progress
 Trace inclusion (and no internal blocking)
 quasi-equivalence for IO automata
 Additional properties: refusal semantics, state-simulations, real-time

properties [Sifakis, Grenoble], liveness properties [Thistle]

Comparison of methods for supervisory control and submodule construction 35Gregor v. Bochmann, University of Ottawa

Considering several specifications

 Another answer (in some cases): consideration of more
than one specification. In CD, the following specifications
have been considered:
 Plant behavior (this corresponds to the behavior of the Context

M1 in SC)
 The “allowed” behavior (subset of Plant behavior, corresponding

to S in SC). Typically, trace inclusion would be required here.
 The “required” behavior (minimum behavior as mentioned

earlier, subset of “allowed” behavior). Typically, trace
equivalence with progress would be required here.

Comparison of methods for supervisory control and submodule construction 36Gregor v. Bochmann, University of Ottawa

Other issues
 Characterizing all solutions

 Easy for SC with trace inclusion conformance
 All submachines of largest solution (which is found by

construction algorithm)
 Complex for conformance with progress

 See [Drissi], [El-Khatib]
 Hierarchical and distributed system models

 E.g. distributed plant with local and global controllers
 Difficulty of the hiding operator

 In case of unobservable events (alphabet A1)
 In case of internal events (alphabet A12)

 e.g. for timed automata, no timer should be set on hidden
transitions

Comparison of methods for supervisory control and submodule construction 37Gregor v. Bochmann, University of Ottawa

Conclusions
 Application areas of SC/CD

 Controller design
 Protocol design (Merlin-Bochmann, 1980)
 Design of communication gateways
 Component reuse, e.g. in software engineering
 Embedded testing

 Very similar concepts are used in SC and CD
 These two fields can profit from cross-fertilization
 Future directions

 More powerful specification paradigms
 e.g. interaction parameters and variables

 More powerful tools
 Practical design methodology based on formal methods

